Mathematical Methods for Computer Science II

Spring 2017

Outline 13

Definition: A formula is **rectified** if no variable occurs both bound and free and if all quantifiers in the formula refer to different variables.

Lemma. Every formula F can be transformed into an equivalent rectified formula via substitutions of variables.

Definition: A formula is in **prenex form** if it has the form $Q_1y_1Q_2y_2...Q_ny_nF$, where $Q_i \in \{\forall, \exists\}$ and the y_i are variables. F does not contain a quantifier.

Theorem. For every formula F, there exists an equivalent and rectified formula G in prenex form, called RPF.

Definition: A **Skolem form** is a prenex rectified formula without existential quantifier (\exists) .

Theorem. Let F be a prenex rectifiable formula.

F is satisfiable \Leftrightarrow the Skolem form of F is satisfiable.

Undecidability

Definition: A function is called **computable** (or a problem is called **decidable**) if there exists an automaton (Turing machine) which, started with an input in the function domain, halts after a finite number of steps and outputs the correct function value. Otherwise, the function (problem) is called **non-computable** (**undecidable**).

Theorem (Church). The validity problem for formulas in predicate logic is undecidable.

Corollary. The satisfiability problem in predicate logic is undecidable.