Mathematical Methods for Computer Science I

Fall 2016

Outline 11

2.7. Equivalence and minimisation.

Definition: Let L be a language over an alphabet Σ . $u,v\in\Sigma^*$ are **equivalent** or **indistinguishable** w.r.t. L if for every $w\in\Sigma^*$ either $\left\{ \begin{array}{l} uw\in L\\ vw\in L \end{array} \right.$ or $\left\{ \begin{array}{l} uw\not\in L\\ vw\not\in L \end{array} \right.$. Notation: $u\equiv_L v$

Lemma. For any language L, \equiv_L is an equivalence relation:

- 1) $u \equiv_L u$ (reflexivity)
- 2) $u \equiv_L v \implies v \equiv_L u \ (symmetry)$
- 3) $u \equiv_L v$ and $v \equiv_L w \implies u \equiv_L w$ (transitivity)

Definition: Let L be regular and D a DFA s.t. L = L(D); $D = (Q, \Sigma, \delta, q_0, F)$. $u, v \in \Sigma^*$ are **equivalent w.r.t.** D, $u \equiv_D v$, if $\delta(q_0, u) = \delta(q_0, v)$.

Theorem (Myhill–Nerode). Let L be a language over an alphabet Σ . Then L is regular $\iff \equiv_L$ has a finite number of equivalence classes.

Corollary. For every regular language L there is a minimal DFA accepting L. Its number of states is the number of equivalence classes w.r.t. \equiv_L . The minimal DFA is unique up to renaming of the states. This DFA is given by the construction in " \Leftarrow " in the proof of the Myhill–Nerode Theorem.